The HIRA Complex Subunit Hip3 Plays Important Roles in the Silencing of Meiosis-Specific Genes in Schizosaccharomyces pombe
نویسندگان
چکیده
BACKGROUND The control of gene expression is essential for growth and responses to environmental changes in various organisms. It is known that some meiosis-specific genes are silenced during mitosis and expressed upon nitrogen starvation in Schizosaccharomyces pombe. When the factors responsible for this regulation were studied, a hip3 mutant was isolated via discovery of a defect in the transcriptional repression of meiosis-specific genes. Hip3 is a subunit of the HIRA (histone regulatory complex A) complex, which consists of four subunits (Hip1, Hip3, Hip4 and Slm9) and acts as a histone chaperone that is independent of DNA replication. METHODOLOGY/PRINCIPAL FINDINGS In a search for mutants, the meiosis-specific gene SPCC663.14c(+) was identified by screening for genes that are silenced during mitosis and induced upon nitrogen starvation. A reporter plasmid that expresses the ura4(+) gene driven by the SPCC663.14c(+) promoter was constructed. Screening for suppressor mutants was then carried out in nitrogen-rich medium without uracil. A mutant with a mutation in the hip3(+) gene was isolated and named hip3-1. This mutation alleviated the transcriptional repression of the ura4(+) gene on the reporter plasmid and of the endogenous SPCC663.14c(+) gene in the presence of nitrogen. A ChIP assay revealed that RNA polymerase II (Pol II) and TFIIE were enriched at the SPCC663.14c(+) locus, whereas the levels of histone H3 were decreased in hip3-1 cells. Intriguingly, histone H3 was heavily modified at the SPCC663.14c(+) locus in hip3-1 cells; these modifications included tri-methylation and acetylation of H3 lysine 9 (H3K9), mono-methylation of H3 arginine 2 (H3R2), and tri-methylation of H3 lysine 4 (H3K4). In addition, the tri-methylation of H3K9 and H3K4 were strongly elevated in hip3-1 mutants. CONCLUSIONS Taken together, these results indicate that Hip3 plays important roles in the control of histone modifications at meiosis-specific gene loci and induces their transcriptional repression.
منابع مشابه
Silencing Mediated by the Schizosaccharomyces pombe HIRA Complex Is Dependent upon the Hpc2-Like Protein, Hip4
BACKGROUND HIRA (or Hir) proteins are conserved histone chaperones that function in multi-subunit complexes to mediate replication-independent nucleosome assembly. We have previously demonstrated that the Schizosaccharomyces pombe HIRA proteins, Hip1 and Slm9, form a complex with a TPR repeat protein called Hip3. Here we have identified a new subunit of this complex. METHODOLOGY/PRINCIPAL FIN...
متن کاملThe fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts.
The assembly of nucleosomes by histone chaperones is an important component of transcriptional regulation. Here, we have assessed the global roles of the HIRA histone chaperone in Schizosaccharomyces pombe. Microarray analysis indicates that inactivation of the HIRA complex results in increased expression of at least 4% of fission yeast genes. HIRA-regulated genes overlap with those which are n...
متن کاملIdentification of the Functional Domains of the Telomere Protein Rap1 in Schizosaccharomyces pombe
The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telome...
متن کاملGenes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen
Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a ...
متن کاملThe Monopolin Complex Crosslinks Kinetochore Components to Regulate Chromosome-Microtubule Attachments
The monopolin complex regulates different types of kinetochore-microtubule attachments in fungi, ensuring sister chromatid co-orientation in Saccharomyces cerevisiae meiosis I and inhibiting merotelic attachment in Schizosaccharomyces pombe mitosis. In addition, the monopolin complex maintains the integrity and silencing of ribosomal DNA (rDNA) repeats in the nucleolus. We show here that the S....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011